What affects fertility of sexed bull semen more, low sperm dosage or the sorting process?

A.C.J. Frijtersa,, E. Mullaarta, R.M.G. Roelofsa, R.P. van Hoornea, J.F. Morenob, O. Morenoc, J.S. Mertona

a CRV, Research & Development, P.O. Box 454, 6800 AL Arnhem, The Netherlands
b Sexing Technologies, Navasota, TX 77868, USA
c ST Benelux, P.O. Box 540, 7400 AH Deventer, The Netherlands

Abstract

Until now it has been unclear to what extent the reduced fertility with sexed semen in the dairy industry is caused by too few sperm per AI dose, or by the effect of flow cytometric sorting, which is the established procedure for sexing semen. Therefore, we evaluated the effects of low sperm numbers per dose with and without sorting on non-return rates after 56 days (NRR\textsubscript{56}); in addition, we evaluated the effects of bulls, in order to further optimize use of sexed semen. Based on results of using sexed semen from seven Holstein bulls, an overall numerical decline of 13.6\% in NRR\textsubscript{56} was observed ($P < 0.05$). About two-thirds of this decline (8.6\%) was due to the low dose ($P < 0.05$), and a third (5.0\%) due to the process of sorting ($P < 0.05$). The effect of low dosage and sorting differed among bulls. We observed a sex ratio of 91.6\% females for sexed semen from the first 131 calves born.

Currently the best way to increase fertility of sexed semen is by closely monitoring fertility so that the highest fertility bulls are used, and by improving farm animal management. However, to make substantial progress, more in depth studies are needed on the sexing technology, especially on aspects such as sorting procedures and sperm dosage.

\# 2008 Elsevier Inc. All rights reserved.

Keywords: Reproduction; Fertility; Spermatozoa; Sex; Bovine

1. Introduction

To date, flow cytometric technology to separate X- and Y-chromosome-bearing sperm is the only reliable technique that has been used successfully for commercialization of sexed semen in the dairy industry [1]. However, compared to conventional semen, lower fertility has been reported [2,3]. Until now it is not known to what degree this is an effect of low sperm numbers per AI dose or of sorting, as reports are not conclusive [2,3]. Due to the limited production efficiency of sorting sperm, a normal commercial dose of sexed bull semen contains only 2.1×10^6 sperm, whereas a conventional semen dose typically contains $15\textendash20 \times 10^6$ sperm. There are a number of reports concerning fertility of sexed semen, but usually they are based on the results from just a few bulls. To further optimize the use of sexed semen, it is essential to know to what extent factors like low sperm dosage, the sorting process and bull differences affect fertility. We therefore evaluated effects of these factors on fertility of sexed
and conventional semen from a number of bulls. In addition we determined the sex ratio of calves from sexed semen.

2. Materials and methods

2.1. Non-return model and statistics

In this study we used NRR56 as a measure for fertility. NRR56 were calculated using records of first and second inseminations as retrieved from farms, and determined per bull and per type of semen product used: conventional sperm (high or low dosage) or sexed sperm (low dosage and sorted). To estimate the effects on NRR56 as accurately as possible for the factors evaluated, corrections were made for several other factors that could bias the results. A regression model was used to correct for parity, herd, season, day of the week of AI service, first or second AI service, AI technician, and interval from AI to calving. To further correct differences in the AI protocol and discrete periods in which semen was used, we did not evaluate NRR56 per se, but evaluated numerical differences in NRR56 between two types of semen products per bull or overall, for each analysis as defined further on. Data were analyzed statistically for effects on NRR56 within and among bulls, or between weighted averages of bulls, by calculating one or two-sided 95% confidence intervals (CI).

2.2. Analysis of low dosage

Before the release of sexed semen produced in the Netherlands (ST Benelux BV, Deventer, The Netherlands) in September 2007, conventional semen was used in a field trial to measure effects of low dosage and bull on NRR56. Seven proven Holstein bulls were used with three ejaculates from each being processed to high (15.0 x 10^6 sperm), and three ejaculates at low dosages (2.0 x 10^6 sperm), within a period of 2 weeks. Collection and processing sperm, and its use in AI were done as described earlier, using Tris-concentrate (Invitrogen, Paisley, UK) as diluent and loading 0.25-cc straws (IMV, L’Aigle, France) at ambient temperature (20 °C) [4]. NRR56 were calculated for the statistical comparisons, using records of inseminations with semen from only these ejaculates.

2.3. Analysis of low dosage + sorting (sexing)

After the first field trial, the bulls continued in commercial production of high dosages of conventional semen (six bulls at 15.0 and one bull at 20.0 x 10^6 sperm) and, approximately 6 months later in addition, low dosages of sexed semen (2.1 x 10^6 sperm). Sorting of X-chromosome-bearing sperm was done according procedures described previously, using MoFlo SXTM sperm sorters [1]. AI of both conventional and sexed semen was performed according guidelines for sexed semen (Sexing Technologies, Navasota, USA). NRR56 was used to determine the effects of low dosage + sorting and bull. We used all records of inseminations retrieved from these bulls over the course of one year after the introduction of sexed semen to obtain sufficient NRR56 data for statistical comparisons.

2.4. Analysis of sorting

To determine the effects of sorting alone and bull on NRR56, the differences in NRR56 per bull and overall, as determined according the above-mentioned two analyses were compared.

2.5. Analysis of sex ratio

To determine the sex ratio we evaluated the percentage of female calves born from the bulls that were evaluated in this study. We used all available calving records from farms over the course of one year after the introduction of sexed semen.

3. Results

For the analysis to determine the effect of low dosage and bull on NRR56, respectively, 8106 records (n = 418 to 2318 per bull) and 8378 records (n = 627 to 1558 per bull) of inseminations with 15.0 and 2.0 x 10^6 sperm per conventional dose were retrieved from seven bulls. NRR56 using 15.0 x 10^6 sperm was 69.2% overall (67.5–72.8% per bull). A significant (P < 0.05) decline in NRR56 was observed overall (8.6%), and for each bull when dosage decreased. However, these declines did not differ significantly among bulls (Table 1).

For the analysis to determine the effect of low dosage + sorting and bull on NRR56, respectively, 64,985 records (n = 259 to 23,341 per bull) and 2036 records (n = 46 to 585 per bull) of inseminations with 15.0 x 10^6 sperm or more per conventional dose, and 2.1 x 10^6 sperm per sexed dose were retrieved from the same bulls. NRR56 using 15.0 x 10^6 sperm was 69.2% overall (67.5–72.8% per bull). A significant (P < 0.05) decline in NRR56 was observed overall (8.6%), and for each bull when dosage decreased. However, these declines did not differ significantly among bulls (Table 1).
Table 1
Descriptive statistics of differences between NRR56 (%) of three analyses, based on different dosages ($\times 10^6$ sperm/dose) of conventional and sexed semen from seven Holstein bulls.

<table>
<thead>
<tr>
<th>Bull</th>
<th>Analysis of low dosage (A)</th>
<th>Analysis of low dosage + sorting (B)</th>
<th>Analysis of sorting only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 $\times 10^6$ conventional minus 15 $\times 10^6$ conventional</td>
<td>S.E.</td>
<td>S.E.</td>
</tr>
<tr>
<td>A</td>
<td>-9.7</td>
<td>± 1.7 * a</td>
<td>-14.5</td>
</tr>
<tr>
<td>B</td>
<td>-6.6</td>
<td>± 1.8 * a</td>
<td>-5.0</td>
</tr>
<tr>
<td>C</td>
<td>-8.2</td>
<td>± 2.0 * a</td>
<td>-20.6</td>
</tr>
<tr>
<td>D</td>
<td>-6.0</td>
<td>± 2.8 * a</td>
<td>0.5</td>
</tr>
<tr>
<td>Ea</td>
<td>-9.4</td>
<td>± 2.8 * a</td>
<td>-2.8</td>
</tr>
<tr>
<td>F</td>
<td>-9.9</td>
<td>± 1.6 * a</td>
<td>-17.8</td>
</tr>
<tr>
<td>G</td>
<td>-8.6</td>
<td>± 2.2 * a</td>
<td>-11.3</td>
</tr>
<tr>
<td>Overall</td>
<td>-8.6</td>
<td>± 0.8 * a</td>
<td>-13.6</td>
</tr>
</tbody>
</table>

a,b,c,d Estimates with different letters in the same column differ ($P < 0.05$) between bulls (using two-sided 95% CI).

* Significant ($P < 0.05$) effect of low dosage or low dosage + sorting (both using one-sided 95% CI), or sorting (using two-sided 95% CI) on NRR56 within bulls or overall.

significantly ($P < 0.05$) from others for the difference in NRR56 (Table 1).

An overall decline of 5.0% in NRR56 was due to sorting only ($P < 0.05$) and the effect was significant for two of the bulls individually. Some bulls differed significantly ($P < 0.05$) from others for this difference in NRR56 (Table 1).

In total, 131 calving records were retrieved, based on AI of sexed semen from five of the seven bulls (6–52 registrations per bull). The weighted average of female calves born was 91.6%. Differences among bulls were not evaluated as the numbers of calvings per bull were too low for statistical analysis.

4. Discussion

Overall, a significant decline in NRR56 with sexed bull semen was observed in this study (13.6 percentage points) compared to the use of conventional semen. When we evaluated the effects of low dosage and sorting in the sexing process separately, we estimated that about two-thirds of this decline was caused by the low dose, and a third was due to sorting (8.6% and 5.0%, respectively). This is in contrast to earlier findings, where in one case the decline in fertility was believed to be mainly an effect of low dosage [2], and in the other of sorting [3]. Most likely the larger effect of sorting was caused by the higher fluidic pressure that was used: 50 instead of the current 40 psi. The effect of low dosage and sorting differed among bulls. This implies that bull fertility of sexed semen cannot be predicted accurately by performing preliminary field trials with conventional semen, using the same dosage as used for commercially sexed semen. Data from more bulls and the use of higher dosages in sexed semen would be helpful to determine more specifically how much bulls vary for dosage and sorting. Until then, monitoring results of sexed semen and keeping the bulls with the highest fertility for sexing is the best way to improve overall fertility of sexed semen. Probably due to the limited number of inseminations and small differences in NRR56 results, we did not detect significant differences between bulls for declines in NRR56 with conventional semen when dosages were lowered. This is in contrast to other studies. Den Daas et al. [5] showed that bull fertility responds in an asymptotic way when sperm dosages are increased, that bulls differ in this response, and that there is no correlation between the rate of increase and the asymptote. Our dose–response curves of 60 bulls confirm this observation; overall the expected decline is 7.5% with 2 $\times 10^6$ conventional sperm per dose (unpublished), which is similar to the 8.6% difference observed in this study.

We estimate that the sex ratio of sexed semen was 91.6%, as this was the observed percentage of female animals from the first 131 calves born. This matches well with the average percentage of X-sperm of sorted semen from Holstein bulls, when rechecked by the sperm sorter.

In unbalanced trials it is difficult to obtain unbiased field comparisons between sexed and conventional semen. For example, the use of split ejaculates to have a well-balanced experiment is not practical due to the inefficient sexing process. Also, farmers use sexed semen preferentially on heifers from a cost-effective point of view, as lactating cows are inherently less
fertile. However, we have reduced this problem effectively by correcting NRR56 for factors such as parity, herd, etc, and by analyses of differences in NRR56, using conventional semen at high dosage as a reference, and using a low dosage similar to that of sexed semen. As far as we know, this is the first study which elucidated and quantified the significant effects of low dosage and sorting in sexed semen.

References

